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We present a method of constructing exact solutions of one-dimensional integral 
equations of special type, to which we reduce the problems of contact between 
elastic thin-walled elements and a solid, and between the elements themselves. 
As we know, problems of this type were first formulated by Galin [l] who assumed 
that the Kirchhoff-Love hypothesis is correct for a thin-walled element. In the 

present paper we use the model adopted in [Z] : the median surface of the thin- 

walled element (shell, plate or beam), the normal displacements of which obey 
the above-named hypothesis, is covered with a layer of an elastic Winkler-type 

support with the pliability coefficient k. 

1. Formulrtlon of the typic&l problem. Let us consider the following 
contact problem. A hinged beam of length 2a (Fig. 1) and flexural rigidity D is acted 

upon by a force P which impresses Into it an 
absolutely rigid body (a stamp). The profile 
of the stamp is described by the function 

g (x) = g( -2). We require to find the con- 

$=- tact stress p (x) , and the length ,& of the 

&r plane of contact. 
Using the influence function [3] 

a a (1.1) 
+ 

VY 
l&G, (x1., s) = (s - a) (,T + a) [(x LC a)” + 

Fig. 1 (s - a)2 - 4a2], z d s 

(where x must be interchanged with s when r > S) for a hinged beam which repre- 

sents the Green’s function for the boundary value problem 

DyTv (4 = q (4 (I 5 1 < a), y (+ a) = yfl (&a) o (1.2) 

we can write the contact problem formulated above (camp. [2]) in the form of the fol- 
lowing integral equation : a 

~P(x)+$ \ G,( .T, s) p (s) ds = IS - g (:r) (1.1: i ,s- Y) (1.3) 
-a 

We find the half-length a of the plane of contact and the translational displacement of 
the stamp 6 zY Y (0) from the equations a 

P (t a) = 0, c c p(rr)dr= P (1.4) 
-z 

We note that the Green’s function (1. 1) can also be written [4] in the following, iterative 
form : 

612 
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G, (x, s) = i G," (x, t) G,” (t, s) dt (1.5) 
--o 

of the Green’s function of the simpler boundary value problem y” (x) = f (x), 1 t 1 < 
a, y (* a) =: 0. 

Below we give the examples of solutions of integral equations with kernels in the form 

of the Green’s functions or their iterations. 

2. Integral equation, on the ba#fc tcgmant. Consider the equation 

cp (x) - h 1 G (Y, s) p (s) cp (s) ds = g (x) (0 d x G b) (2. 1) 

Here p (x) is a specified nonnegative continuous function, g (x) is a specified function 
and cp (s) is an unknown function, the last two functions belonging to &(a, b). The ker- 

nel (; (x. S) is a Green’s function of the boundary value problem 

1 [& ] = 2 pj (.1.) ?Jcnmi) (X) = f (X) (‘l d x Q b, 
j=o 

(2.2) 

i=o 

We shall assume, for generality, that the functions pj (x) and the coefficients A vjt 
and B vj depend on the parameter A, consequently G(x, s) also depends on this para- 
meter. The Green’s function of the boundary value problem (2.2) exists and is unique 
[4], provided that the corresponding homogeneous problem has only a trivial solution or, 
which is equivalent, that the condition 

det {u, 1!/jl}v.j=0 1 , ,....n-1 # 0 
(2.3) 

(where (yj (z) is the fundamental system of the operator I) holds. 

We have the following representations [5]: 

I 
n-1 

z 
G (x, s) = ;:; 

c 
Go 

Y j (4 ai 

Yi Cx) bj 

(4 

(4 

The functions Uj (.s) and bj (s) can be found from the equations 

n-1 

c 
j=o 
n-1 

c 
j=o 

n-1 

(bj T Uj) yjm’(S) = 0, C (bj 
i=O 

n-1 

ajuva [Yjl f c bjuvb [Yjl = 0 
j=o 

- Uj) yj”-l) (s) = pi,’ (s) 

(,n=O, 1, . . . . 

(v-0, 1, . ..) n-l) 

n - 2) 

(2.4) 

(2.5) 
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The integral equation (2. 1) is equivalent [4] to the boundary value problem 

W-%?/=f (adz\(b), V,[y]=O @=O,l, . . ..n--l) (2.6) 

under the condition that 
b 

g(s)=! G(v)f(S)ds (f=z[gl), u,[gl=o (v=ovi, . . ..n--l). (2.7) 
l 

The eigenvalues of Eq, (2.1) coincide [4] with the roots of the equation 

det VJ” 1% (5, ~)l}Y,jdJ ,,,.... n-1 = 0 (2.8) 

where yj (5, h) is the fundamental system of the operator l - hp . 
To solve Eq. (2.1) we must write the boundary value problem (2.6) with (2.7) taken 

into account, in the form 

I [cp - gl - hp (cp - g) = Qg, UJCP - gl = 0 

and use the Green’s function lYh (z, s) of the boundary value problem (2.6). This yields 

cp (4 = g (4 + h [ JIA (5, s) p (s) g (s) as (a G x < 4 (2. 9) 
a 

Using the theory of completely continuous operators [S, 61 we can show (although we 
shall not attempt it here) that the restrictions (2.7) imposed on the right-hand side of 
(2.1) can be discarded, i. e. that the following theorem holds: 

Theorem 2. 1. When the right-hand side of the integral equation (2. 1) is arbit- 

rary and belongs to &(a, b) , then its unique solution has the form (2.9) where rh (z. 

S) is the Green’s function of the boundary value problem (2.6). The spectrum of (2.1) 

coincides with the roots of (2.8). 

3. Intrgrrl equation: on a rertrfcted interval. Consider the equation 

9 
CP (x) - h \ 6’ (5, s) p (s) ‘p (s) ds = g (z) (0 < a < r < P < b) (3.1) 

c( 

First, we shall explain which conditions are satisfied by the Green’s function of the boun- 

dary value problem (2.2) at the points z = a and z = p. From (2.4) it follows that 

n-1 

@"'(a, S) zzz c $')(Q~(~) (r <s), m-0, 1, . . . . n-1 (3.2) 

j=o 

n--l 

G’“‘($, s) = --I 
z 

y,‘“’ (8) bj (s) / 0 > s) 

j=O 

Since 
det {ye”’ (~))j,~=~,~ ,_,, ,n-l # 0 (2 B 2 G B) 

is a Wronskian, from (3.2) we can find 
n-1 W-1 

aj (s) = 
c 

Mjk (a) G(‘) (Cc, S), bj (S) = C Mj, (8) G(‘) ($, S) 
k=O k=O 

Substituting these expressions into the second equation of (2.5), we find that 
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@(G(~, s)] =o (v=O, 1, . . . . n--l) 

where 
n-1 n-1 

r;,"'"[y] = c &k('$y'k'(a) + c &k(8)!+k' (p) 

k=O k=O 

(3.3) 

n-1 n-1 

(s,,(d)= x Mjk(ii)U,,[yj], &k(p) = c M.ik(rj)Ud%l) 

j=o j=O 

If we take into account the fact that the matrices 

{‘$‘(~)}j,~=o,r,...,~~-1, {Mjk (~~:)b,k=O,l.....n-l 

are by definition reciprocal, then we can easily show that the equation 

C” [Yj] = uv [Yj] 

holds. Therefore we have 
det VP kh1h,c=0,1(..., n-1 # 0 

and this proves the following theorem: 
Theorem 3. 1. The Green’s function G (ST, s) of the boundary value problem 

(2.2) specified on the interval [a, b] is simultaneously a unique Green’s function of 
the boundary value problem 

1 [Y] = f, u? [Y] = 0 (y=O, 1, . . . . n-i) (3.4) 

specified on the interval ]a, /3] contained within ]a, bl. 
From Theorems 2.1 and 3.1 follows 
Theorem 3. 2. A unique solution of the integral equation (3. l), for arbitrary 

right-hand side belonging to L, (a, 0) , is given by the formula 

v(r) = g(2) + h[ rh(2, s)p(s)g(s) ds (3.5) 
OL 

where the resolvent r’h (2, s) is a Green’s function of the boundary value problem 

z[y]--hpY= f (r<r<<), u:'p[y]=o (vzxo,i,...,n-i) (3.6) 

The spectrum of the integral equation (3.1) coincides with the roots of the equation 

det VJ? [Y~(G ~)lb=o,I,...,~n-l = 0 

When the kernel is symmetric, we can use the Hilbert-Schmidt theorem [4, 6, 71 to 
obtain the solution of the integral equation in the form different from that given by 
Theorem 3.2. To do this, we denote the orthonormal eigenfunctions of the homogeneous 

boundary value problem (3.6) by (pp (5, &). Then 

[ G C2.7 s) P (a) (PP (s, A,,) ds = L’S (5, L) 
a 

Taking this into account, we obtain the following formula for the solution of (3.1): 
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It can be shown that Theorems 2.1, 3.1 and 3.2 proved above remain valid also for 
the systems of integral equations of the type (2.1) or (3. l), but in these cases the part 
of the scalar boundary value problems and their Green’s functions will be played by the 
matrix [4] boundary value problems and the matrix Green’s functions. 

4, Integral 8qurtfon: with iterated Gresn’c kernslr, Let us con- 
sider Eq. (3.1) with the kernel 

! 
G(r. S) = \ G:,(X, QC, (t, sjdt (4.4 

representing an iteration of two Green’s functions each of them corresponding to a dif- 
ferent boundary value problem specified on a different interval, each containing the in- 
terval \a, PI. Theorem 3.1 enables us to assume that these Green’s functions correspond 
to the boundary value problems (j .-. 0 and j :-- 1) on the general interval [a, @J, 

i.e. 
tj[Y]=-f (ct<Z<f3), ~Ty[y] z () (vr=iI, 1, . . . . nl) (4.2) 

From (4.1) it follows that E,[G] -_ c, and, that the derivatives of the function G (x, ,s) 
of up to the n&h order are cont~uous on the whole of the interval la, 81 for any fixed 

value of S. Moreover, from (4. 1) and (4.2) it follows that 

U:,f(G)=O (Y=o,I, . . . . ~rO--~), U::fl&G]-- (v-1:0,1, ._., /$,-I) (4.3) 

If we assume that the coefficients of the differential operator I, are rzi-times different- 
iable, then the operator Ii will be meaningful and we shall be able to consider the boun- 

dary value problem 

ill, [y] = f (a 4 J: x< p), U,“[y] r= 0 (v _.z 0, I, . . .( no +- rr1 - 1) (4.4) 

where 
(4.5) 

u:.f[z,y] (Vr. n, 1, . . . . El-l) 

Its homogeneous variant has only a trivial solution, since 

de1 u,* &jJ)+o 1 ..r&.n,__l # 0 I >. (4.6) 

where yj (2) is the fundamental system of the equation in (4.4), connected with the 
fundamental systems gj” (x) and yil (x) of the differential operators I, and I, by 

Yjtz) =-r Yj”(r) (i=n 1, . . . . no-i), jjn,+j (2) = (4.7) 

Y.il (13 (j ::- i), 1. . . ., fl, - 1) 

and we also have 
,@[ij,l] = yjo (i=O, 1, I..) n,--1) 

To confirm the validity of (4.6), we take into account the fact that the matrix appearing 
in the expression is, by virtue of (4.7) and (4.5), a right triangular block matrix consist- 
ing of fourblocks, and the diagonal blocks will be represented by the matrices 



with, by virtue of Theorem 3.1, nonzero determinants. The determinant (4.6) is equal 
to the product of these determinants [7]. 

Consequently, if a Green’s function of the problem (4.4) exists, then it is unique CS]. 

But, according to (4,l) and (4.3) the function p 

!/ (J) = \ G (3.. s) f(s) ds 
G 

is a solution of the boundary value problem (4.4), therefore the formula (4.1) defines 
its Green’s function. This proves, with Theorem 2. 1 taken into account, the following 

theorem. 
Theorem 4. 1. A unique solution of the integral equation (3.1) belonging to 

L, (a, p) with a kernel of the type (4. I), is determined (with g E L,) by the formula 
(3.4) in which rh (LC, S) is the Green’s function of the boundary value problem 

Ull IYI - hpy = f (z d 2 g B), u,* [y] = 0 (v = 0, 1,. . . , nofnr-I) (4.8) 

The spectrum is determined here by the roots of the equation 

det VJV* I%-@~ h~l}v,j=o,l,...,no+nl-l 

where yj (z, A) is the fundamental system of the solution of the operator 1110 - hp. 
In a particular case when r, 

G’(z, S) = 1 G, (x, t) G,.(t, s) dt (4.3) 
a 

we can show another form of solution (under the assumption that G,, is independent of 
A). To do this, we set in (3.1) with the kernel (4. 9) h = pL and denote the resolvent 

of the equation ? 
cp(s)-~1 G,(rr, s)cp(s)ds= g(s) (r<x<,<P) 

J 

by rO (2. S. r_l). Then the resolvent r (5, s, p”) of the integral equation considered 
can be written in the form [3] 

+r (x7 s, Ps) = To (5, s, /J) - ro (z, s,-PFL) 

and we have 
Theorem 4. 2. A unique solution belonging to L, (a, p) of the integral equa- 

tion (3. l), for k == p’ , with the kernel (4.9) is given (with p E 1) by the formula 
a 

mW=W++\ [r, (z, s, p) - ro (~7 s - rl)l g (5) ds 
a 

where r,, (s, X, p) is the Green’s function of the boundary value problem 

~“~Yl-PY=f (zi~<z<p), Lr,“t[y]=O (v=:O,I, . . ..nO-1) 

The eigenvalues are equal to squares of the roots of the equation 

det {~‘Z,$ [Yj"(zt P)l)v,j=o,l,...,no-~ = 0 

where ZJjO (5, p) is the fundamental system of the operator 1, - p. 

6, Integral equatfonr with cuperporltion of Green’8 function@. 
Equations of the form 

q--(Goq+$-lrpJ=g (=6x631 (5.1) 
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Gjq = S Gj (~7 S) Pi (s) CP (s) ds (j = 0, I) 
a 

arise when two thin-walled elements are in contact with each other. To construct their 

solution we introduce the functions 

xo = cp - aG,cp, xr = cp - hG,rp (5.2) 

and rewrite (5.3.) in the form 
X0-I-X1-_ =g (5.3) 

if 
det {f-J?$ is? (G ~)l~v,j=o,l,...,ng)-l # 0 (m = 0,l) (5.4) 

then by Theorem 2.1 wecantransform Eqs. (5.2) into 

cp = x0 + ~r‘oxo, cp = Xl + hl’,Xl (5.5) 

I’;t’ (x,s) / (s) ds, m = O,l 
> 

a 

where I’? (z, s) are the Green’s functions of the boundary value problems 

MY1--h,omY=i (a<x<~8), Uyq2[yJ L-i) (5.6) 
(v--o,1 (...) /&-I), n=O,l 

where (yj” (z, A} are the ~ndamental systems of the operators I, - hp,). Substi- 
tuting the consecutive values of cp given by (5.5) into (5.3). we arrive at the following 
system of integral equations : 

X0 - hr,SI, = g, XI - uoxo = g (5.7) 

We shall show that if a solution of this system has been constructed, then the solution 

of the initial equation (5. 1) will be given by one of the formulas of (5.5). Let us e. g. 
substitute the first expression for CP from (5.5) into the initial equation (5.X) and take 
into account the fact that the known integral equations satisfied by the resolvent kernels 
[3, 5, 61 will, in this case, have the form 

?Jo - AC, L=- h”GoI’o, IJ’, - hG, = h”GJ, (5.8) 

As the result we obtain, in place of (5. I), Xo - kGlxo - h2GlI’,xo = g. To confirm 

that the above expression is an identity, we substitute into it the expressions 

hG,xo :=- ~~G,P,x~ + AGIg,, X2G,I’,~,, =- AG,xI - hG,g 

obtained from Eqs. (5.7) by operating on them with G,, and take into account the first 

equation of (5.7). 
On the other hand, any solution of (5.1) will lead, through the formulas (5.2), to a SO- 

lution of the system (5.7). To show this it is sufficient to substitute (5.2) into (5.7) and 

use (5.8). 
Let us now turn our attention to the problem of solving the system (5.7). Clearly, any 

solution of this system will also be a solution of the following two independent equations: 

x0 - hsl?lroX_o = g + hr,g, x1 - h2rorlx1 =~- fi + xr,g (5.9) 
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obtained by eliminating from the system X1 (first equation) and x0 (second equation). 
We shall show that the converse is also true, i.e. that the solutions x0 and Xr of the in- 
tegral equation (5.9) represent the solution of the system (5. ?), provided that h is not 
an eigenvalue of the integral equations (they have a continuous spectrum [3, 51). In fact 
operating on the first equation of (5.9) with rO, we convert it into the form 

g + hroxo - &2r,r, fg + hr,xo) = g + hr,g 

Comparing this equation with the second equation of (5.9) we conclude, that X1 - 
hI‘,,Xo = g. We obtain the second equation of (5. ‘7) in a similar manner, by operating 

on the second equation of (5.9) with ri. 
Th%s we arrive at the solution of one of the equations of (5.9), e.g. of the second 

equation. To solve it, we utilize the results of Sect. 4. The part of the kernels G&, S) 
and G, (z, s) is played by the kernels rho (5, s) and I’h’ (2, s), and the boundary 

value problem (4.8) assumes the form 

(ii - &Pd (lo- ~Po) WI - AZ?/ = f (a A 5 $ P) (5.10) 

U”‘b1 = 0 (v=O,l,...,ql$n,-1) 

where 
U,‘[Yl =C,$[Y] (v=cf, l,..., n,--i) 

C+no IYI = UZ [LlYl - ?J,q;P [pay] (Y = 0,1. ) . . . ( al - 1) 

It is clear that the differential operator introduced here has a meaning only when the 

function p0 (x) is at least n,-times continuously differentiable, 
As previously, we denote the fundamental system of the differential equation of (5.10) 

by Yj (3, h), j = %I, . . ., n, + n,--- 1. Then, in accordance with Sect. 4, the con- 

dition 
det tUv’ [Yj (27 h)I),,j~,l,...,ne+nr--l # 0 (5.11) 

will ensure that a unique Green’s function I’ (5, s, L) of the boundary value problem 
(5.10) can be constructed, and hence the integral equation of (5.9). This proves the 

following theorem : 
Theorem 5, 1. If p0 (x) in the integral equation (5.1) is n,-times continuously 

differentiable and the parameter h is such that the conditions (5.11) and (5.4) hold, 
then the solution of this equation can be obtained by the formulas 

6. Integrrl rquatfonr on rsveral fntexvrlr. Let us consider the equa- 
tion on two intervals 

-‘P(x)--h (S+~)G(z,s)p(s)p(s)ds=g(z) (6.1) 

se Ia* 01 P @,\I + a<a<@<p<PGb 

By Theorem 3.1 the kernel of this equation is also the Green’s function of the boundary 
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value problem (3.4). Assuming that 

q (a$ = 0, w -=C 3 < p (6.2) 

we define additi~ally Eq. (6.1) on the whole interval la;, fl] in the following manner: 

The function P (2) is continued into the interval [o, P] in an arbitrary manner, provided 
that its continuity is preserved. 

If we assume for the time being that the function 9 (a~) is known and & is different 

from the eigenvalue, then by Theorem 3.2 the integral equation (6.3) will have a unique 
solution in the form of the function B 

Cp (z) = h(z) -t- ‘$(x) + h 1 rh f~, s) [h(s) + ‘#(s)] p(s) ds, I E ]cx, j] (6.4) 
il 

The resolvent rk (x, s? will be a Green’s function of the boundary value problem (3.6) 
and the spectrum of the integral equation (6.3) will be determined by the zeros of the 

determinant 
det {C’s fYj (z, ~)])V,~==o,~,...,~-r (6.51 

Taking now into account in (6.4) the relations (6.2), we arrive at the following eCptiOn 

for 9 (z): P 

SW+ hSrh(3.,s)p(s)4(s)ds =z- r(r) ((0<.2..q r,) (6.6) 
CA 

According to Theorem 3.1, when the values of a differ from those of the roots of the 
determinant (6,5), then its kernel I’h (z:, S) will be a Green’s function of the boundary 

value problem E I?/] _ hPY = j (@ < 2^ f p), c7yoIp (y] = \I (v = 03 * t * *. 1 n -’ 1) (6.7) 

The matrix {Mj, i-r:, h))j,k=*,i, . . . . n-l is an inverse of the matrix 

(Y&Q) (Z, ?b)}j,k'E&l, .-.t m-1' 

the determinant of which is a Wronskian of the differential equation appearing in (6.71, 
and is therefore different from zero. The coefficients s.,~ (a) and s,i (p> are determined, 
as before, by the formulas (3.3). 



Thus the solution of the integral equation (6.6) requires, according to Theorem 2.1, 
constructing a Green’s function of the boundary value problem 

l IYI = f (0 d Z < p), ~t,P[!ll = 0 (v=O ,I,..., n-l) (6.9) 

If J. is such that the condition 

det (P [Y~]}v,j=o,r ,..., n--l # 0 (6.10) 

holds, we can use formulas of the type (2.4) and (2.5) to construct a unique Green’s func- 
tion Rh (z, s) of the boundary value problem (6.9) and obtain the solution.of the integ- 

ral equation (6.6) in the form 

(6.11) 

To obtain the initial equation (6.1) it remains to substitute (6.11) into (6.4) and take 
into account (6.3) and the equations of the type (5.8) for the resolvent Rx. As the re- 
sult, we have 

cp (2) = g (2) - r (z> + h j RA (z, S) P (s) r (a) da (6.12) 

5 E [u, ml + [P, ~1, r(x) = - h (T; + ~]IA(z, Spas 
a P 

and the result obtained can be stated in the form of the following assertion: 

Theorem 6. 1. If the conditions (6.5) and (6.10) hold, then the solution of Eq. 

(6.1) is given by the formula (6.12). The functions r~ (5, a) and R), (z, s) areGreen’s 
functions of the boundary value problems (3.6) and (6.9), respectively. 

It can also be deduced from the proof that the spectrum of the integral equation is 

contained within the set of zeros of the determinants (6.5) and (6.10). 
The above method of solving Eq. (6.1) can obviously be generalized to the case when 

the number of intervals of integration is greater than two. Such equations correspond to 
the problems with several regions of contact (e. g. impressing several stamps into a beam, 

etc. ). 

7. An example of rppllcrtion of the rrrultr obtained, Using The- 
orem 3.2 we can write the solution of the integral equation (1.3) to which the contact 
problem discussed in Sect. 1 (Fig. 1) was reduced. We can, however, obtain simpler for- 
mulas by changing slightly the mathematical formulation of the problem. With this pur- 

Fig. 2 

pose in mind, we shall analyze the displa- 
cements of the points on the beam surface 
in the zone of contact, beginning from the 
instant of termination of the contact. We 

place fictitious supports at the end points 
A and B (Fig. 2) of the contact interval 
- a B 5 < CL. The displacements of the 

beam on the segment indicated will con- 

sist of the deflections yP (5) of a hinged 
beam (of length 2a) caused by the contact 
pressure P (x), and of the deflections yM (2) 



622 G. 1% Pap” 

due to the end moments M = llzP/3 (@ = a - a), equal to the bending moments at the 
cross sections 5 = + a of the initial beam (of length aa). The displacements of the 
points of the stamp which have come into contact, will be expressed by the formula 

h (x) = Q, - g (2), 6, = 6 - y (a) 

and h (a) = (j , i.e. 6, = g (a). Consequently, the condition of contact is 

kp (4 + IP (4 -t- Y&f (3) = g (a) - g (x) 

Taking into account the equations 

4Dy, (2) = P@ (a2-~2). DYp (a) = [ G, (z, 8) p (s) ds 
---a 

we obtain, in place of (1.3), the integral equation 

P(~)+c~ 1 G~~~,s~~(s)~s=~~~~, ]zJ<a 
--J 

c* = (kD)-‘, / (5) = k-’ [g (a) - g (x)] - ‘14PfIW (a2 - r*) 

(7.1) 

(7.2) 

the kernel of which is determined by the formula (1.1) in which a is replaced by CT. 

Equation (7.2) represents a particular case of an equation the solution of which is given 
by Theorem 5.1 and has the form 

a 

p (T) = f (z) + c Ill1 
[S 

ro (5, 3% ic) f (S)dS 
1 

(7.3) 
--0L 

VT0 (5, s, ic) == sin v (u + z) siu v (J - S) cosec 2~3 
(I< S, Y T= v_C((1 -1 f)) 

(where 5 and s must be interchanged when I 3, s). Here r’, (,T, S, ic) is the Green’s 

function of the boundary value problem 

- Y” (I) - “‘Y (.T) == f (z) (I 5 I q u, v” = ic), y (F a) -= 0 

and the solution obtained satisfies automatically the first condition of (1.4). 

If we assume, as we usually do in the contact problems [S], that g (~1 = ;‘ri?, then the 
formula (7.3) can be reduced to the following simple expression: 

CP(2) 0*---E2 
-“2+ 

sin i/s (0 - E) sh l/s (0 + 4) + sh l/a (0 - 5) sin r/2 @+E) (7.4) 

2CP co90 +cho 

The length of the region of contact must be obtained from the equation 

which represents the outcome of the second condition of (1.4) with (7.4) taken into 

account. 
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MATRIX FACTORIZATION METHOD IN MIXED STATIC PROBLEMS 
OF AN ELASTIC WEDGE 

PMM Vol. 40, N: 4, 1976, pp. 674-681 
V. N. BERKOVICH 
(Rostov-on-Don) 

(Received September 29, 1975) 

We study the plane contact static problems of an elastic wedge under the condi- 
tion that it is rigidly connected with the stamp. The question of solvability of the 

above problems is investigated and an approximate method of solution involving 

the matrix factorization method developed in paper [1] and others, is proposed. 
The plane problems of elasticity for a wedge with discontinuous boundary con- 
ditions were investigated by a number of authors. For example, in [2] the author 
used the method of reduction to an integral Wiener-Hopf equation to investigate 
the problem of indenting a rigid stamp into a perfectly smooth face of an elastic 
wedge. In [3] a similar problem was reduced to a certain Fredholm equation of 
second kind. In [43 and others (+) , the asymptotic and orthogonal polynomial 

methods were successfully used. 

1. We shall consider an elastic wedge, the upper face of which is acted t$ron by a strip 
stamp rigidly adhering to the face. The boundaries of the zone of contact are separated 
from the edge of the wedge by the distances a* and b* , respectively (b* > a* > 0) , 
and we study the case of plane deformation. For a displacement vector u”(r)={uro(r), 
lb0 (r)} defined in th e region cp ~7 a, a* < r ( b* , we require to find the total 
stress vector (JO (r) = {r+50ro (r),oqo@)} in the zone of contact for each of the following 
conditions of clamping of the lower edge of the wedge (rp = 0, 0 < r ( CXJ): 

A u, (I, 0) = u, (r, 0) = 0 

B z,,(r, 0) = u, (r, 0) == 0 

*) Lutchenko, S. A. and Popov, G. Ia. On certain plane contact problems of the theory 
of elasticity for a wedge. In colL : 3-rd All-Union Convention on Theoretical and 
Applied Mechanics. Moscow, 1968. Annot. dokl. , Moscow,“Nauka”, 1968. 


